

Traffic Network Modeling

- Physical Network Model, include:
- Road Segments \rightarrow Links
- Intersections \rightarrow nodes
- Traffic Operations Models, include:
- Traffic stream modeling
- Shockwaves and queuing
- Controls (such as signal controls)
- Traffic Assignment Models, include:
- Vehicles Routing

Traffic Network Modeling

- Traffic Assignment Modeling

- Static Traffic Assignment
- Ignores the time dimension
- Assume that traffic characteristics are constant with time
- Dynamic Traffic Assignment
- Consider the time dimension
- Consider the variability in traffic characteristics with time

Basic Concept

- Link Performance

Function:

- Travel time increases with the increase in traffic flow
- In a linear case:
- $\quad t=a+b q$
- At $q=0$, travel time equals the free flow travel time

Flow (q)

User Equilibrium (UE) Traffic Assignment

- Basic Concept:
- Travel Times on all routes, for a given OD pair, are equal for used routes and less than that of an unused route

If both routes are used:
\rightarrow Travel Time of Route 1
equals
Travel Time of Route 2

User Equilibrium (UE) Traffic Assignment

\square Link Performance Functions:

If the total flow q_{T} then;
$\mathrm{q}_{\mathrm{T}}=\mathrm{q} 1+\mathrm{q}_{2}$
$\mathrm{tl}=\mathrm{t}_{2}$

User Equilibrium (UE) Traffic Assignment

\square Solving For UE:

- Equate Routes Travel

Time $\left(\mathrm{t}_{1}=\mathrm{t}_{2}\right)$
$\rightarrow \mathrm{f}\left(\mathrm{q}_{1}\right)=\mathrm{f}\left(\mathrm{q}_{2}\right)$

- Total flow (q_{T}) must be accommodated
$\rightarrow \mathrm{q}_{\mathrm{T}}=\mathrm{q}_{1}+\mathrm{q}_{2}$

User Equilibrium (UE) Traffic Assignment

- Link Performance Functions:

If the total flow is less than q_{1} then;
All vehicles will use Route 2

User Equilibrium (UE) Traffic Assignment

- Example 1 (UE):
- Total Flow from A to B equals $10000 \mathrm{veh} / \mathrm{hr}$
- $\mathrm{t}_{1}=30+0.0025 \mathrm{x}_{1}$
- $\mathrm{t}_{2}=15+0.0020 \mathrm{x}_{2}$

- x is the link flow

User Equilibrium (UE) Traffic Assignment

- Example 1 (UE):
$q_{T}=q_{1}+q_{2}=10000$
$t_{1}=t_{2}$
$30+0.0025 q_{1}=15+0.0020 q_{2}$
$30+0.0025 q_{1}=15+0.0020\left(10000-q_{1}\right)$
$q_{1}=1111 \mathrm{veh} / \mathrm{hr}$

$q_{2}=10000-1111=8889 \mathrm{veh} / \mathrm{he}$
$t_{1}=30+0.0025(1111)=32.8 \mathrm{~min}$
$t_{2}=15+0.002(8889)=32.8 \mathrm{~min}$
Total - Travel - Time $=10000(32.8)=328000$ veh. min

User Equilibrium (UE) Traffic Assignment

- Tips:
- If a negative value is estimated for q_{1}, what does this mean:
- No vehicles will use Route 1 ($\mathrm{q}_{1}=0$)
- All vehicles will use Route 2 ($\mathrm{q}_{2}=10000$)

User Equilibrium (UE) Traffic Assignment

- Tips:
- Travel Time of Route $1=$ $\mathrm{t}_{\text {link } 1}+\mathrm{t}_{\text {link2 }}$
- Travel Time of Route $2=$ $\mathrm{t}_{\text {link } 3}+\mathrm{t}_{\text {link } 4}+\mathrm{t}_{\text {link5 }}$

User Equilibrium (UE) Traffic Assignment

- Tips:
- Travel Time of Route 1 = $\mathrm{t}_{\text {link } 1}+\mathrm{t}_{\text {link2 }}$
- Travel Time of Route 2 = $\mathrm{t}_{\text {link } 1}+\mathrm{t}_{\text {link } 3}+\mathrm{t}_{\text {link } 4}$
- Traffic flow on link 1

Route 2 equals the summation of traffic flows on route 1 and route 2

User Equilibrium (UE) Traffic Assignment

- Basic Concept:
- Travel Times on all routes, for a given OD pair, are equal for used routes and less than that of an unused route.
- Assumptions:
- Rational Drivers
- Demand is Constant
- Supply is Constant (constant capacity)
- Drivers have perfect knowledge of routes and travel times

System Optimal (SO) Traffic Assignment

\square Basic Concept:

- Minimizing the Total Travel Time in the Network

Flow (q)

System Optimal (SO) Traffic Assignment

- Solving For SO:

- Estimate Marginal function
$m=\frac{d}{d q}($ total - travel - time $)=\frac{d}{d q}(q . t)$
- Equate estimated marginal increase of all routes $\left(\mathrm{m}_{1}=\mathrm{m}_{2}\right)$
- Total Flow must be accommodated $\left(\mathrm{q}_{\mathrm{T}}=\mathrm{q}_{1}+\mathrm{q}_{2}\right)$

System Optimal (SO) Traffic Assignment

- Example 2 (SO):
- Total Flow from A to B equals $10000 \mathrm{veh} / \mathrm{hr}$
- $\mathrm{t}_{1}=30+0.0025 \mathrm{x}_{1}$
- $\mathrm{t}_{2}=15+0.0020 \mathrm{x}_{2}$

- x is the link flow

System Optimal (SO) Traffic Assignment

- Example 2 (SO):

$$
\begin{aligned}
& m_{1}=\frac{d}{d q}\left(30 x_{1}+0.0025 x_{1}^{2}\right)=30+0.005 x_{1} \\
& m_{2}=\frac{d}{d q}\left(15 x_{2}+0.002 x_{2}^{2}\right)=15+0.004 x_{2} \\
& q_{T}=q_{1}+q_{2}=10000 \\
& m_{1}=m_{2} \\
& 30+0.005 q_{1}=15+0.004 q_{2} \\
& 30+0.005 q_{1}=15+0.004\left(10000-q_{1}\right) \\
& q_{1}=2778 \mathrm{veh} / \mathrm{hr} \\
& q_{2}=10000-1111=7222 \mathrm{veh} / \mathrm{hr} \\
& \hline
\end{aligned}
$$

System Optimal (SO) Traffic Assignment

- Example 2 (SO):

$$
\begin{aligned}
& q_{1}=2778 \mathrm{veh} / \mathrm{hr} \\
& q_{2}=7222 \mathrm{veh} / \mathrm{he} \\
& t_{1}=30+0.0025(2778)=36.9 \mathrm{~min}
\end{aligned}
$$

$$
t_{2}=15+0.002(7222)=29.4 \mathrm{~min}
$$

$$
\text { Total }- \text { Travel }- \text { Time }=2778(36.9)+7222(29.4)=314835 \text { veh.min }
$$

Less than the UE case (328000 veh.min)

System Optimal (SO) Traffic Assignment

\square Basic Concept:

- Minimizing the Total Travel Time in the Network
- Assumptions:
- Drivers compliance
- Demand is Constant
- Supply is Constant (constant capacity)

UE \& SO as Mathematical programs

- In large-scale traffic networks
- Large number of ODs
- Multiple alternative routes between each OD pair

- Mathematical Programming

- Problem is formulated as a constrained minimization problem.
- Just mathematical manipulation

Braess's Pseudo-Paradox

- Basic Concept:
- An Increase in system capacity resulting in an increased network total travel time

Braess's Pseudo-Paradox

- Example:

Braess's Pseudo-Paradox

- Example: Before Case UE

Braess's Pseudo-Paradox

- Example: After Case UE
Link 2
$\left(\mathrm{x}_{2}=\mathrm{q}_{2}+\mathrm{q}_{3}\right)$

$$
\begin{aligned}
& \mathrm{t}_{1}=50+\mathrm{x}_{1} \\
& \mathrm{t}_{2}=50+\mathrm{x}_{2} \\
& \mathrm{t}_{3}=10 \mathrm{x}_{3} \\
& \mathrm{t}_{4}=10 \mathrm{x}_{4} \\
& \mathrm{t}_{5}=10+\mathrm{x}_{5}
\end{aligned}
$$

Available Routes:
Route $1 \rightarrow$ links 1 , and 3
Route $2 \rightarrow$ links 2 , and 4
Route $3 \rightarrow$ links 2 , 5 , and 3

Braess's Pseudo-Paradox

- Not every addition in system capacity results in a reduction in network total travel time.
- Drivers choose routes to minimize their own travel time regardless system optimization.

