

Trip Production:
Total number of trips generated from zone "i" to all other zones

Trip Attraction:
Total number of trips attracted into zone "i" from all other zones

Definitions

- Home-Based Trip

The home of the trip maker is either the origin or the destination of the journey.

Examples
Home to work
Work to home
Home to gym
Gem to home

- Non-home-Based Trip

Neither origin nor destination of the journey is the home of the traveler

Examples
Work to Gym
Work to School
Work to Mall

- Trip Chain / tour

A trip with one or more intermediate stops (Activities).

- Purpose of Activities ??
- Location of Activities ??
- Duration of Activities ??

Classification of Trips

- By trip purpose:

Mandatory Trips:
Hard to cancel/reschedule
Trips to work
Trips to school or college
Shopping Trips
Social Trips
Recreational Trips
Optional Trips:
Maintenance Trips

- By Time of Day
- Peak Period (morning and afternoon)
- Off-Peak
- By Trip-Maker Characteristics
- Income
- Age
- Car ownership
- Household size

Modeling Trip Generation

Technique 1 : Growth Factor Modeling

How to determine the growth factor F_{i} ?
$F_{i}=\frac{f_{i}\left(\text { Population }{ }^{\text {future }}, \text { Income }{ }^{\text {future }}, \text { CarOwnership } \text { future }\right)}{f_{i}\left(\text { Population }^{\text {Current }}, \text { Income } e^{\text {current }}, \text { CarOwnership }{ }^{\text {Current }}\right)}$

Example of Growth Factor Method

- Given

250 households with zero car 250 households with one car

Non-car-owning households produce 2.5 trips/day
Car-Owning households produce 6.0 trips/day

Current Trip Production $=$
 250 * $2.5+250$ * $6.0=2125$ trips/day

For the target year

- population and average household income is expected to remain the same,
- car ownership is expected to increase to one car I household for all households in the zone
- Current Car Ownership Rate $=0.5$ car/hh
- Future Car Ownership Rate = 1.0 car/hh

Growth Factor $F=1.0 / 0.5=2$

Future Trip Production =
2.0 * $2125=4250$ trips/day

Without the Growth Factor Method

Future Trip Production = 500 * $6.0=3000$ trips/day

The Growth Factor Method overestimated the number of trips generated from Zone "i"

Technique 2 :
Cross Classification / Category Analysis

For each Category

(1) No. of households
(2) \sum No. of Trips

- Calculate trip rate for each category

$$
\text { Trip Rate }=\frac{\sum \text { Trips }}{\text { No. of Housholds }}
$$

Assumption

We assume this rate will stay the same for the target year

Number of trips per category (CELL) =

Estimated Trip Rate *
Number of future households in this cell

- The art of the method lies in choosing the categories

The standard deviation of the trip-rate distribution within the same category is minimized.

Example

Model 1	Low Income	Med Income	High Income	
		1000 hh 2500 trip Rate $=2.5$	1000 hh 4000 trip Rate $=4$	
HH Size 1				
HH Size 2				
HH Size 3				

Model 2	Low and Med Income	High Income	
HH Size 1 2000 hh 6500 trip Rate $=3.25$ HH Size 2 HH Size 3 HH Size 4			

- In the target year

1000 hhs low income and family_size_1 1700 hhs mid income and family_size_1

Model 1
Total trips $=1000 * 2.5+1700 * 4.0=9300$

Model 2
Total Trips $=2700$ * $3.25=8775$

Advantages

- Independent of the zone system of the study area
- No need to make assumption about the relationship between no of trips and independent variables
- If combined with the regression technique, a different relationship could be used for each cell

Disadvantages

- The methodology does not allow extrapolation beyond the calibration strata
e.g., If the model considered classes with income up to $\$ 100,000$, we can not predict the trip rate for households with income greater than $\$ 100,000$.

Disadvantages (cont)

- It needs large sample size for calibration. Otherwise, some cells are not reliable to use their rate in predictions.
- There is no effective way to choose among variables for classification, or to choose the groupings of a given variable.

Technique 3 :

 Regression Analysis

Keep in mind,
Keep in mind,
Different samples give different relationships \hat{a} and \hat{b}

How to Compute \mathbf{a} and \mathbf{b} ?

For a given sample
$\begin{array}{ll}\mathrm{x} 1 & \mathrm{y} 1 \\ \mathrm{x} 2 & \mathrm{y} 2 \\ \mathrm{x} 3 & \mathrm{y} 3 \\ \mathrm{x} 4 & \mathrm{y} \\ \mathrm{x} 5 & \mathrm{y} 5 \\ \mathrm{x} 6 & \mathrm{y} 6 \\ \mathrm{x} 7 & \mathrm{y} 7 \\ \mathrm{x} 8 & \mathrm{y} 8 \\ \mathrm{x} 9 & \mathrm{y} 9\end{array}$
$\hat{a}=\bar{y}$
$\hat{b}=\frac{\sum_{i} x_{i} \cdot y_{i}}{\sum_{i} x_{i}^{2}}$

Test of Hypothesis

$$
y=\hat{a}+\hat{b} \cdot x
$$

No. Of Trips Generated out of Zone i= $150+2.57$ * (No of Households in Zone i)

$$
\begin{aligned}
& \hat{a}=150 \\
& \hat{b}=2.57
\end{aligned}
$$

This is what we
got from our sample

- Now, I need to test that there is a true relationship between
- Number of trips generated out of a zone and
- Number of households in this zone.
in other words, I want to test the hypothesis that $\mathrm{b}>0$ or $\mathrm{b} \neq 0$
- Assume y is following a normal distribution
- However, b is a linear combination of y (the relation between Y and b is linear), y is also a normal distribution

- This means we can standardize \hat{b} in the normal way

$$
z=\frac{\hat{b}-b}{\sigma / \sqrt{\sum_{i} x_{i}^{2}}}
$$

However, we do no know σ

A good estimate of σ is the residual variance around the fitted line

$$
s^{2}=\frac{\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}
$$

The standardized \hat{b} is distributed student or t with n -2 degree of freedom

$$
t=\frac{\hat{b}-b}{s / \sqrt{\sum_{i} x_{i}^{2}}}
$$

Step 1:

Determine the null hypothesis H 0 and the alternative hypothesis H 1
$\mathrm{HO}: \mathrm{b}=0$
In our example, we know that number of trips increases with the increase in the number of households.
H1: b > 0

Step 2:

Calculate S_{b} and \hat{b} based on the given sample.

Step 3:

Calculate

$$
t=\frac{\hat{b}-0}{s_{b}}
$$

Step 4:

Determine acceptance and rejection periods based on the given confidence level.

Step 5:
Accept or reject H0 and make conclusion

Coefficient of Determination \mathbf{R}^{2}

$$
R^{2}=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=\frac{\text { explainedvariation }}{\text { totalvariation }}
$$

No explanation	Perfect Explanation
No correlation between x and y	correlation between x and y

Zone-based Regression

- Role of the intercept

Y: No. Of Trips Generated out of Zone i
X: No of Households in Zone i

```
\(X\) ranges from 500 hhs to 2500 hhs
Model 1
Model 2
\(\mathrm{Y}=150+2.57\) * x
\(\mathrm{Y}=3250+0.52\) * x
```

Which model do you prefer? Why?

- Zone totals vs. Zone rates

Y: total number of trips generated from zone i
Or
y : Number of trips per household in zone i

- Zone Totals
- Depends on the size of the zone.
- Heterocedasticity (variability of the variance) is likely to occur.
- Tend to have higher intercorrelation between the independent variables
- Zone Rates
- Independent of the zone size.
- Reduces heterocedasticity
- Less intercorrelation between the independent variables

Household-based Regression

- More expensive in terms of data collection and calibration
- More sampling error is expected

Stepwise Regression

step	Model	R^{2}	
1	$\mathrm{Y}=2.36 \mathrm{X} 1$	0.203	
2	$\mathrm{Y}=1.80 \mathrm{X} 1+1.31 \mathrm{X} 2$ small	0.325	Improving
3	$\mathrm{Y}=0.91+1.44 \mathrm{X} 1+1.07 \mathrm{X} 2$ (3.7) $(8.2)$$(4.2)$	0.384	V

Y: trips per household
X1: number of workers
X2: number of cars

Dealing with Non-linearities

- In the linear regression, we assume all independent variables have a linear influence on the independent variables.

However, some independent variables show non-linear behavior

Example: age, sex, residential type, job title

- How to solve this problem

1) Use transformation - (e.g. take the logarithm)
The right transformation is not clear in all cases.
Takes time and effort
2) Use dummy variables

Use of Dummy Variables

$Y=0.91+1.44 \mathrm{X} 1+1.07 \mathrm{X} 2$
Y. trips per household

X1: number of workers
X2: number of cars
$Y=0.84+1.41 \mathrm{X} 1+0.75 \mathrm{Z} 1+3.14 \mathrm{Z} 2$

Y: trips per household
$X 1$: number of workers
Z1: takes the value of 1 with one car and zero otherwise

Z2: takes the value of 1 with two cars and zero otherwise

No. of workers

Regression model with dummy variables

One Question

- Why do not we develop one separate model for each car-ownership class instead of using dummy variables?

1) We use all the data instead of using part of it
2) Dummy variables are shown to reduce intercorrelation between the independent variables
