

Data Collection

- Main data fields
- Classified Traffic volume: number of vehicles crossing a specific point during a specific time interval (per vehicle type).
- Vehicles Speed: Travelling speeds and spot speeds.
- A wide variety of Surveillance Technologies
- Intrusive Technologies such as;

Hoda Talaat
3

Data Collection

- A wide variety of Surveillance Technologies
- Extrusive technologies, such as;
- Traffic Counts (Manual or Automatic Counters)
- Microwave Sensors (Such as Remote Traffic Microwave Sensor RTMS, and Doppler radar)
- Infrared Radars

- Traffic video cameras

Traffic Studies

- What?
- Speed Studies
- Volume Studies
- Travel Time and Delay Studies
- Parking Studies
- Accidents Studies
- ...
- Why?
- Assessment of current traffic conditions
- Estimate actual performance measures
- How??

Hoda Talaat

Speed Studies

- Mean Speeds
- Example:
- Section 100 m length
- Test Vehicle Travel times: $7 \mathrm{sec}, 10 \mathrm{sec}, 5 \mathrm{sec}, 8$ sec
- Average Speed ????

Average time $==(7+10+5+8) / 4=7.5 \mathrm{sec}$
Average speed $=100 / 7.5=13.33 \mathrm{~m} / \mathrm{sec}$

OR

Travel Speeds are 14.28, 10, 20, 12.5
Average speed=
$(14.28+10+20+12.5) / 4=14.2 \mathrm{~m} / \mathrm{sec}$

Speed Studies

\square Mean Speeds

- Time Mean Speed (TMS)

TMS $=\left[\right.$ SUM $\left.\left(\mathbf{d} / \mathbf{t}_{\mathbf{i}}\right)\right] / \mathbf{n}$

- Space Mean Speed (SMS)

SMS = [(n)(d)/SUM($\left.\left.\mathbf{t}_{\mathbf{i}}\right)\right]$

Spot Speed Studies

- What?
- Collecting data on vehicles’ instantaneous speeds on a given highway stretch.
- Why?
- To estimate the distribution of speeds of vehicles in a stream of traffic, which is crucial for:
- Operational Management/control (speed zones, passing/no passing zones, speed limits...etc).
- Geometrical Design
- Safety Analysis
- Evaluations (Before/After Studies)

Spot Speed Studies

- How? Statistical Analysis
- Graphical Representation:

Histogram: Frequency or relative frequency plot per class

Cumulative Relative Frequency Diagram: A plot of the fraction of observations smaller than or equal to a given threshold versus the threshold value.

Spot Speed Studies

- How? Statistical Analysis
- Numerical Summaries:
- Mean= Sum of Speeds/Number

Formally;
Mean $=\frac{\Sigma \text { frequency*mid-class speed }}{\Sigma \text { frequency }}$
\rightarrow for theoretical purposes, the mean is the most important numerical measure (a crucial modeling parameter).

Spot Speed Studies

- How? Statistical Analysis
- Numerical Summaries:
- Median: $50^{\text {th }}$ percentile speed
\rightarrow it is a resistance measure (relatively not affected by outliers). Useful for practical applications.

Spot Speed Studies

- How? Statistical Analysis
- Numerical Summaries:
- Mode: Speed with Highest Frequency
\rightarrow not unique but has the most practical significance. Not affected by outliers.

Spot Speed Studies

\square How? Sample definitions \& performance measures

- Free Flow Speed: Average vehicles speed under free flow conditions (low traffic volume conditions).
- Design Speed: 95th Percentile Speed is used as the maximum safe speed for the design of the roadway elements.
- Speed Limit: $85^{\text {th }}$ Percentile speed is usually posted as the roadway speed limit.
- Speed Index: the average (mean) speed divided by the free flow speed

Spot Speed Studies

- How? Reliability Analysis (for speeds or travel times)

Spot Speed Studies

- How? Reliability Analysis (for speeds or travel times)
- Planning Speed Index= $95^{\text {th }}$ Percentile Speed/Free Flow Speed
- Buffer Index $=\left(95^{\text {th }}\right.$ Percentile Speed-Average Speed $) /$ Average Speed

Volume Studies

- What?
- Collecting data on the number of vehicles or pedestrians crossing a specific point at a specific time interval.
- Why?
- To estimate traffic volume characteristics, which are crucial for demand/capacity analysis (and hence, most traffic-related applications).

Volume Studies

- How?

For Example;
Daily Expansion Factor for Day 1 =2000/1500=1.33
\rightarrow Why do need these factors??

Hoda Talaat

Volume Studies

- How?
- Daily Rates - Expansion Factors

2. Monthly Expansion Factor= $\overline{\text { ADT of a specific month }}$

For Example;

Monthly Expansion Factor for
August $=2000 / 2600=0.76$
\rightarrow Why do need these factors??

Volume Studies

- How?
- Hourly Rates

1. Hourly Volume (HV): number of cars traveling a roadway section per hour.
2. Peak Hour Volume (PHV): highest HV throughout the day.

Volume Studies

- How?
- Hourly Rates- Peak Hour Factor

- Example:
$\mathrm{PHF}=\frac{4200}{4 * 1200}=0.875$

Time Interval	Volume in time interval
$5: 00-5: 15$	1000
$5: 15-5: 30$	1100
$5: 30-5: 45$	1200
$5: 45-6: 00$	900
Total	$=4200 \mathrm{vph}$

Hoda Talaat

Volume Studies

- How?
- Hourly Rates

3. Daily Design Hourly Volume (DDHV): Volume exceeded only in 29 hour of the year.

K-factor $=\frac{\text { DDHV }}{\text { AADT }}$
\rightarrow 8-12\% for urban facilities,
\rightarrow 12-18\% for rural ones

Descending order of hourly volumes for entire year

