Levelling 2

The cases to change the level position are :

- The distance between level and staff exceeds 50m.
- The staff is below line of sight due to depression in ground surface.

- The staff is above line of sight due to elevated ground surface.
- The direction of levelling is changed.

Levelling Route

Examples

B.S	I.S.	F.S.	RISE	FALL	REDUCED LEVEL	ADJ.	FINAL LEVEL	REMARKS
			Or	Or HPC				

Arrange the following data in standard levelling table format if underlined readings are foresights:
$1.52,1.73,1.34,1.75,1.25,1.82,1.67,1.28$

Arrange the following data in standard levelling table format if points number 3 , 5,6 are intermediates
$1.22,1.67,139,1.92,2.04,1.85,2.23,2.74,2.11,1.63,1.90$

Arrange the following data in standard levelling table format if points number 3,5,6 are change points:
$1.52,1.65,1.82,1.75,1.43,1.93,2.12,1.79,1.34,1.45,1.60$

- Levelling Loop

Starting from T.B.M. to define RL of some of fixed points, and closing loop again to the same T.B.M.
Compute Loop closing error, and decide whether it is acceptable or not.
Determine Final corrected RL for each point.

B.S	I.S.	F.S.	RISE	FALL	REDUCED LEVEL	ADJ.	FINAL LEVEL	REMARKS
1.215				21.754	0	21.754	BM1	
	1.648			0.433 $1.215-1.648$	21.321 $21.754-0.433$	0	21.321	2
1.482	1.813		0.165 $1.648-1.813$	21.156 $21.321-0.165$	0.003	21.159	3	
0.945		1.171	0.311 $1.482-1.171$		21.467 $21.156+0.311$	0.006	21.473	4
	1.51				20.902 $21.467-0.565$	0.006	20.908	5
		0.664	0.846 $1.51-0.664$		21.748 $20.902+0.846$	0.006	21.754	BM1

$\sum \mathrm{BS}=3.642 \quad \sum \mathrm{FS}=3.648 \sum$ Rise $=1.157 \quad \sum \mathrm{Fall}=1.163$

B.S	I.S.	F.S.	HPC	REDUCED LEVEL	ADJ.	FINAL LEVEL	Remarks
1.215			$\begin{gathered} \hline 22.969 \\ 21.754+1.215 \end{gathered}$	21.754	0	21.754	BM1
	1.648			$\begin{array}{\|c\|} \hline 21.321 \\ 22.969-1.648 \\ \hline \end{array}$	0	21.321	2
1.482		1.813	$\begin{gathered} 22.638 \\ 21.156+1.482 \end{gathered}$	$\begin{array}{\|c} \hline 21.156 \\ 22.969-1.813 \\ \hline \end{array}$	0.003	21.159	3
0.945		1.171	$\begin{gathered} 22.412 \\ 21.467+0.945 \end{gathered}$	$\begin{gathered} 21.467 \\ 22.638-1.171 \end{gathered}$	0.006	21.473	4
	1.51			$\begin{gathered} 20.902 \\ 22.412-1.51 \\ \hline \end{gathered}$	0.006	20.908	
		0.664		$\begin{gathered} 21.748 \\ 22.412-0.664 \\ \hline \end{gathered}$	0.006	21.754	BM1

$\sum_{\text {all }} B S-\sum_{\text {all }} F S=$ Total rise - total fall $=$ Last $\mathrm{RL}-$ first RL
i. Equalities checked in last row.
ii. Any discrepancy is due to arithmetic mistake(s), but has nothing to do with accuracy of measurements.
$\sum_{\text {all }} B S-\sum_{\text {all }} F S=3.642-3.648=-0.006 \mathrm{~m}$
Total rise - total fall $=1.157-1.163=-0.006 \mathrm{~m}$
Last RL - first $R L=21.748-21.754=-0.006 \mathrm{~m}$

Closure Error

- Definition of misclosure \& allowable values
- Whenever possible: close on either starting benchmark or another benchmark to check accuracy \& detect blunders. Misclosure (evaluated at closing BM):
c.e. = measured RL of BM - correct RL of BM

If c.e. acceptable: then corrected so that closing BM has correct known RL

- Max. acceptable misclosure (in $m m$): $E= \pm C \sqrt{K}$
- where $K=$ total distance of leveling route (in number of kilometers)
$C=$ a constant: typically between 3 mm (precise leveling work of highest standards) \& 12 mm (ordinary engineering leveling)

Construction levelling: often involves relatively short distances yet a large number (n) of instrument stations. In this case, an alternative criterion for E can be used:

$$
E= \pm 5 \mathrm{~mm} \sqrt{n}
$$

$$
\begin{aligned}
& \mathrm{n}=3 \\
& \mathrm{E}= \pm 5 \mathrm{~mm} \sqrt{n}= \pm 8.7 \mathrm{~mm}
\end{aligned}
$$

c.e. $=$ measured $R L$ of $B M-$ correct $R L$ of $B M=21.748-21.754=-0.006 m$

Correction=- c.e./no. of TP $=-(-0.006 / 2)=0.003 \mathrm{~m}$

B.S	I.S.	F.S.	RISE	FALL	REDUCED LEVEL	ADJ.	FINAL LEVEL	REMARKS
1.215					21.754	0	21.754	BM1
	1.648			$\begin{gathered} 0.433 \\ 1.215-1.648 \end{gathered}$	$\begin{gathered} 21.321 \\ 21.754-0.433 \\ \hline \end{gathered}$	0	21.321	2
1.482		1.813		$\begin{gathered} \hline 0.165 \\ 1.648-1.813 \end{gathered}$	21.156 $21.321-0.165$	0.002	21.158	3
0.945		1.171	$\begin{gathered} 0.311 \\ 1.482-1.171 \end{gathered}$		$\begin{array}{c\|} \hline 21.467 \\ 21.156+0.311 \\ \hline \end{array}$	0.004	21.471	4
	1.51			$\begin{gathered} 0.565 \\ 0.945-1.51 \end{gathered}$	$\begin{gathered} 20.902 \\ 21.467-0.565 \end{gathered}$	0.004	20.906	5
2.956		2.432		$\begin{aligned} & 0.922 \\ & 1.51-2.432 \end{aligned}$	$\begin{gathered} 19.980 \\ 20.902-0.922 \end{gathered}$	0.006	21.321	6
	1.833		$\begin{gathered} 1.123 \\ 2.956-1.833 \\ \hline \end{gathered}$		$\begin{gathered} 21.103 \\ 19.98+1.123 \end{gathered}$	0.006	21.109	7
0.847		1.652	$\begin{gathered} 0.181 \\ 1.833-1.652 \end{gathered}$		$\begin{gathered} 21.284 \\ 21.103+0.181 \end{gathered}$	0.008	21.292	8
		1.164		$\begin{gathered} 0.317 \\ 1.51-2.432 \end{gathered}$	$\begin{gathered} 20.967 \\ 21.284-0.317 \end{gathered}$	0.008	20.975	BM2

$\sum \mathrm{BS}=7.445 \quad \sum \mathrm{FS}=8.232 \sum$ Rise $=1.615 \sum$ Fall $=2.402$
Prof. Adel El-Shazly Levelling 2
$\left.\begin{array}{|l|l|l|c|c|c|l|l|}\hline \text { B.S } & \text { I.S. } & \text { F.S. } & \text { HPC } & \begin{array}{l}\text { REDUCED } \\ \text { LEVEL }\end{array} & \text { ADJ. } & \begin{array}{l}\text { FINAL } \\ \text { LEVEL }\end{array} & \text { REMARKS } \\ \hline 1.215 & & & \begin{array}{c}22.969 \\ 21.754+1.215\end{array} & 21.754 & 0 & 21.754 & \text { BM1 } \\ \hline 1.648 & & & \begin{array}{c}21.321 \\ \text { انسوب }\end{array} & 02.969-1.648\end{array}\right)$
$\Sigma \mathrm{BS}=7.445 \quad \sum \mathrm{FS}=8.232$
check

Prof. Adel El-Shazly Levelling 2
$\sum_{\text {all }} B S-\sum_{\text {all }} F S=$ Total rise - total fall $=$ Last $\mathrm{RL}-$ first RL
i. Equalities checked in last row.
ii. Any discrepancy is due to arithmetic mistake(s), but has nothing to do with accuracy of measurements.
$\sum_{\text {all }} B S-\sum_{\text {all }} F S=7.445-8.232=-0.787 \mathrm{~m}$
Total rise - total fall $=1.615-2.402=-0.787 \mathrm{~m}$
Last RL - first RL $=20.967-21.754=-0.787 \mathrm{~m}$

Closure Error

- Definition of misclosure \& allowable values
- Whenever possible: close on either starting benchmark or another benchmark to check accuracy \& detect blunders. Misclosure (evaluated at closing BM):
c.e. = measured RL of BM - correct RL of BM

If c.e. acceptable: then corrected so that closing BM has correct known RL

- Max. acceptable misclosure (in $m m$): $E= \pm C \sqrt{K}$
- where $K=$ total distance of leveling route (in number of kilometers)
$C=$ a constant: typically between 3 mm (precise leveling work of highest standards) \& 12 mm (ordinary engineering leveling)

Construction levelling: often involves relatively short distances yet a large number (n) of instrument stations. In this case, an alternative criterion for E can be used:

$$
E= \pm 5 \mathrm{~mm} \sqrt{n}
$$

$$
\begin{aligned}
& \mathrm{n}=5 \\
& \mathrm{E}= \pm 5 \mathrm{~mm} \sqrt{n}= \pm 11 \mathrm{~mm}
\end{aligned}
$$

c.e. $=$ measured $R L$ of $B M-$ correct $R L$ of $B M=20.967-20.975=-0.008 \mathrm{~m}$

Correction=- c.e./no. of TP $=-(-0.008 / 4)=0.002 \mathrm{~m}$

