Coordinate Systems

We think of the

 earth as a sphere

It is actually a spheroid (ellipsoid), slightly larger in radius at the equator than at the poles

Shape of the Earth
Location on earth is defined by coordinates

Types of Coordinate Systems to define location

- (1) Cartesian coordinates (x, y, z)- used by GPS
- (2) Geographic coordinates (ϕ, λ, h) used for mapping and ellipsoidal height determination
- (3) Projected coordinates ($\mathrm{E}, \mathrm{N}, \mathrm{H}$) on a local area of the earth's surface. (mapping coordinates)
- H - referenced to mean sea level (geoid)
- H - known by level or elevation or orthometric height
- h - referenced to ellipsoid surface and known by ellipsoidal height

Cartesian Coordinates (x,y,z)

- GPS defines the Cartesian coordinates X, Y, Z.
- The Cartesian coordinate system with its origin at center of earth is known as geocentric system.
- The Z axis is defined along the earth's axis of rotation
- Plane XZ passing through Z axis and Greenwich city.
- Y axis is perpendicular to XZ plane.

Ellipsoid or Spheroid

Rotate an ellipse around an axis

Geographic Coordinates

Geographic Coordinates

- GPS coordinates for different application are defined in geographic coordinates i.e. Latitude and longitude.
- Geographic coordinates for GPS are defined with respect to WGS84 ellipsoid.
- WGS84 ellipsoid is the most suitable mathematical surface to represent globally actual earth.
- WGS84 is the datum for coordinates defined by GPS.
- Latitude is angle between the normal to ellipsoid and equator. It varies between zero to $90^{\circ} \mathrm{N}$ or zero to $90^{\circ} \mathrm{S}$.
- Longitude is angle measured between meridian of Greenwich and meridian of point. It varies from 0 to $180^{\circ} \mathrm{E}$ or from 0 to $180^{\circ} \mathrm{W}$.

Quick Review of Latitude and Longitude

- Latitude
- Measured in degrees North and South of the Equator.
- Lines drawn parallel to each other running west to east.

Quick Review of Latitude and Longitude

- Longitude
- Measured in degrees East or West of the prime meridian.
- Lines drawn running North and South.

Plane coordinates

Map Projections

- The plane coordinate system or map coordinate system is the result from projection of geographic coordinates of points on earth.

Simply one can imagine the projection as light source at center of earth and rays from light source through different features on earth are projected on plane surface of rounded surface that can converted to be plane surface.

Earth to Globe to Map

Representative Fraction
$=\frac{\text { Globe distance }}{\text { Earth distance }}$

Map Projection:
Scale Factor
$=\quad \frac{\text { Map distance }}{\text { Globe distance }}$
(e.g. 0.9996)

Types of Projections

Map Projections - Planar or Polar Planar or Polar Projection

Map Projections - Cylindrical

Map Projections - Conic

Universal Transverse Mercator UTM

- Universal Transverse Mercator UTM system is the universal map projection system.
- UTM system is used cylinder tangent to earth at different longitude.

- UTM system preserves the angles, and distorts the distances and areas (Conformal projection).
- UTM system divides the earth into zones each one with width 6° starting from zone 1 from 180° w to $174^{\circ} \mathrm{w}$ to zone 60 from $174^{\circ} \mathrm{E}$ to $180^{\circ} \mathrm{E}$.

- Reference Latitude $\left(\varphi_{0}\right)$, is the equator
- $($ Xshift, Y shift $)=\left(x_{0}, y_{0}\right)=(500000,0)$ in the Northern Hemisphere, units are meters

UTM projection

- Scale distortion is 0.9996 along the central meridian of a zone
- There is no scale distortion along the standard meridians
- Scale distortion gets to unacceptable levels beyond the edges of the zones
- False northing for each zone in northern hemisphere is 0 and $10,000,000$ for southern hemisphere.
- Egypt is covered by zones 35 (from 24 E to 30 E) and 36 (from 30 E to 36 E).

UTM zones

UTM Zone Numbers

Coordinate Systems for Egypt

- The national geographic coordinates for Egypt has been defined with respect to ellipsoid Helmert 1906.
- Ellipsoid Helmert1906 as datum for geographic coordinates in Egypt is non-geocentric datum which deviates from center of earth by distance around 160m.
- The use of GPS in national positioning requires the transformation from GPS coordinates defined w.r.t WGS84 to national coordinates defined w.r.t. Helmert 1906.

Egyptian Transverse Mercator ETM

Representations of the Earth

Mean Sea Level is a surface of equipotential called the Geoid
Geoid is vertical datum

- Height defined by GPS is known by ellipsoidal height (height above ellipsoid surface.
- Height above geoid is known by orthometric height (level).
- Difference between ellipsoidal height and orthometric height is geoid separation or (geoid undulation).

Definition of Elevation (Level) Orthometric height H

Elevation H

Elevation is measured from the Geoid

Heighting

- Heights determined using GPS are referenced to the WGS 84 Ellipsoid
- Ellipsoid Heights are heights above the ellipsoid

Heighting

- The Geoid is that equipotential surface that best equates to Mean Sea Level
- The geoid undulates due to the effects of
- Topography, geology etc.
- Orthometric heights are referenced to a Datum which is typically M.S.L
- M.S.L approximates the Geoid

Heighting

- The geoidal undulation may be positive or negative.

Heighting

